APPENDIX - VI - SAMPLE QUESTIONS PHYSICS

- A mass m rotates in a vertical circle of radius R and has a circular speed v_c at the top. If the radius of the circle is increased by a factor of 4, circular speed at the top will be
 - A) decreased by a factor of 2 B) decreased by a factor of 4 C) increased by a factor of 2 D) increased by a factor of 4 A vessel contains 1 mol of O_2 and 2 mol of He. What is the value of ${}^{\prime}C_P/C_V{}^{\prime}$ of the mixture?
 - A) 17/11
- B) 71/65

- The effective capacitance between terminals A and B (as shown in the figure) is

4. The current I in the circuit shown below is

- An electric wire in the wall of a building carries a DC current of 25 A vertically upward. What is the magnetic field due to 5. this current at a point which is 10 cm to the right of the wire? A) 3.1×10^{-4} T B) 5.0×10^{-5} T
 - A) $3.1 \times 10^{-4} \text{ T}$
- C) 4.23×10^{-4} T
- D) $5.11 \times 10^{-3} \text{ T}$
- In an electric circuit, R, C, L and AC voltage are all connected in series. When L is removed from the LCR circuit, the 6. phase difference between the voltage and the current in the circuit is $\pi/3$. If instead, C is removed from the LCR circuit, the phase difference is again $\pi/3$. Determine the power factor of the circuit.
 - A) $\frac{1}{2}$
- B) $\frac{1}{\sqrt{2}}$
- /C) 1
- A short object of length l is placed along the principal axis of a concave mirror away from focus. The object distance is x. If the mirror has a focal length f what will be the length of the image? (l << |v - f|, where v is the image distance)
 - A) $\frac{(x-f)^2}{f^2l}$
- B) $\frac{f^2l}{(x-f)^2}$
- C) $\frac{fl}{(x-f)}$
- The wavelength of the characteristic X-ray K_{α} line emitted by a hydrogen like element is 0.32 Å. The wavelength of K_{β} line emitted by the same element will be
- B) 0.27 Å
- C) 0.34 Å
- D) 0.40 Å
- The number of alpha-particles scattered at 60° is 100 per minute in an alpha-scattering experiment on gold foil. The number of alpha-particles scattered per minute at 90° will be
- C) 16 A p-n junction diode connected in series with a resistor of 200 Ω is forward biased so that a current of 200 mA flows.
- If the voltage across this combination is instantaneously reversed at t = 0, the current through diode is approximately, C) 100 mA B) 200 mA A) 400 mA
 - PAGE 21

VITEEE - 2019

CHEMISTRY

A)
$$n = 2, l = 1, m_l = -1$$

B)
$$n = 3, l = 2, m_l = 2$$

$$n = 8, l = 7, m_l = -6$$

Gibbs energy of formation of two oxides (CO and Al2O3) are given below as a function of temperature (3). $\Delta G_{CO} = -0.2 \text{ T} - 195.4 \text{ and } \Delta G_{Al_2O_3} = 0.2 \text{ T} - 1104.$ Which one of the scenarios is possible based on Ellingham diagram at T = 2000 K?

- A) C reducing Al₂O₃
- B) Al reducing CO
- C) No reaction between Al and CO

D) C reducing Al₂O₃ and Al reducing CO

In a face centered cubic unit cell, the relation between ionic radii $(r^+ and r^-)$ and edge length 'a' is

- A) $r^+ + r^- = \sqrt{2}a$
- B) $r^+ + r^- = \sqrt{3}a$
- C) $r^+ + r^- = a/2$
- D) $r^+ + r^- = 2a$

When a catalyst is added to a system at equilibrium, a decrease occurs in the 4.

- A) potential energy of the reactants
- B) potential energy of the products C) heat of reaction D) activation energy

The Nernst equation for the following electrochemical cell will be:

 $Ni(s) | Ni^{2+}(aq) | | Ag^{+}(aq) | Ag$

- A) $E_{\text{cell}} = E_{\text{cell}}^{\text{o}} RT/F[\ln[\text{Ni}^{2+}]/[\text{Ag}^{+}]^{2}]$
- B) $E_{\text{cell}} = E_{\text{cell}}^{o} RT/2F[\ln[\text{Ni}^{2+}]/[\text{Ag}^{+}]^{2}]$
- C) $E_{\text{cell}} = E_{\text{cell}}^{\circ} RT/2F[\ln[Ag^{+}]^{2}/[Ni^{2+}]]$
- $E_{\text{cell}} = E_{\text{cell}}^{\circ} RT/2F[\ln[\text{Ni}^{2+}]/[\text{Ag}^{+}]]$

The stereochemical description of the chiral centre (marked as 'x') and the olefin in the following compound is 6.

- A) 4R, 2Z
- B) 4S, 2Z
- C) 4R, 2E
- D) 4S, 2E

The reaction of but-1-ene with B₂H₆ followed by oxidation using H₂O₂/NaOH gives

- A) Butan-2-ol
- B) Butan-2-one
- C) Butyraldehyde
- D) Butan-1-ol

In which one of the following reactions, a new carbon-carbon fond is not formed?

- A) Cannizzaro reactions
- B) Wurtz reaction
- C) Aldol reaction
- D) Friedel-Crafts reaction

The product formed in the following reaction is

- A) CH₃CH₂CN
- B) CH₃CH(CN)CHO
- C) CH₃CH(OH)CN
- D) CH₃CH(OH)COOH

Nitrobenzene on reaction with Sn/HCl will produce 10.

- A) 2-nitroaniline
- B) 4-nitroaniline
- C) aniline
- D) 4-chloroaniline

MATHEMATICS

D) 1

- 1. If $G(x) = \begin{vmatrix} f(x)f(-x) & 0 & x^4 \\ 3 & f(x) f(-x) & \cos x \\ x^4 & 2x & f(x)f(-x) \end{vmatrix}$, then $\int_{-2}^2 x^4 G(x) dx$ is equal to

 A) -1

 B) 0
- 2. If $1, \alpha_1, \alpha_2, \alpha_3$ are the fourth roots of unity, then the value of $(1 + \alpha_1)(1 + \alpha_2)(1 + \alpha_3)$ is equal to A) -3

 B) -1

 C) 0

 D) 2
- 3. A conic has focus (1, 0) and corresponding directrix x + y = 5. If the eccentricity of the conic is 2, then its equation is

 A) $x^2 + 4xy + y^2 + 18x 20y + 49 = 0$ B) $x^2 4xy + y^2 18x 20y + 49 = 0$ C) $x^2 + 4xy + y^2 18x + 20y + 49 = 0$ D) $x^2 + 4xy + y^2 18x 20y + 49 = 0$
- 4. Let ū, v̄, ω̄ to be three vectors such that |ū| = 1, |v̄| = 2, |ω̄| = 3 and v̄ and ω̄ are mutually perpendicular. If projection of v̄ along ū̄ is equal to that of ω̄ along ū̄ then |ū v̄ + ω̄| equals to
 A) √7
 B) 14
 C) 2
 D) √14
- 5. A plane at a unit distance from the origin intersects the coordinate axes at P, Q and R. If the locus of the centroid of $\triangle PQR$ satisfies the equation $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = k$, then the value of k is
 - A) 3 B) 4 C) 9 D) 16
 - If g be an inverse function of f and $f'(x) = \frac{1}{1+x^5}$, then g'(x) will be:

 A) $1+x^5$ B) $1+\left(g(x)\right)^5$ C) $\left(\frac{1}{1+g(x)}\right)^5$ D) $(g(x))^5$
- 7. The area enclosed between the curves $y = |x^3|$ and $x = y^3$ is

 A) $\frac{1}{2}$ B) $\frac{1}{4}$ C) $\frac{1}{8}$ D) $\frac{1}{16}$

A) 4

- 8. Let f(x) be a differential function such that $f'(x) = f(x) + \int_0^2 f(x) dx$ and $f(0) = \frac{(4-e^2)}{3}$. Then f(x) is:

 A) $e^x \frac{(e^2-1)}{3}$ B) $e^x \frac{(e^2-1)}{4}$ C) $e^x \frac{(e^2+1)}{3}$ D) $e^x \frac{(4-e^2)}{3}$
- 9. A coin is tossed n times. The maximum value of n such that the probability of getting no head is greater than 1/16 is

 (C) 5

 (D) 2
- 10. Suppose 5- digit numbers are formed by the digits 1,2,3,4 and 5 without repetition. If they are arranged in an ascending order, then 100th number is

 A) 51243

 B) 51423

 C) 51234

 D) 51342